
Temporal Link Prediction using Matrix and Tensor
Factorizations

DANIEL M. DUNLAVY and TAMARA G. KOLDA

Sandia National Laboratories

and

EVRIM ACAR

National Research Institute of Electronics and Cryptology (TUBITAK-UEKAE)

The data in many disciplines such as social networks, web analysis, etc. is link-based, and the
link structure can be exploited for many different data mining tasks. In this paper, we consider

the problem of temporal link prediction: Given link data for times 1 through T , can we predict

the links at time T + 1? If our data has underlying periodic structure, can we predict out even
further in time, i.e., links at time T + 2, T + 3, etc.? In this paper, we consider bipartite graphs

that evolve over time and consider matrix- and tensor-based methods for predicting future links.

We present a weight-based method for collapsing multi-year data into a single matrix. We show
how the well-known Katz method for link prediction can be extended to bipartite graphs and,

moreover, approximated in a scalable way using a truncated singular value decomposition. Using

a CANDECOMP/PARAFAC tensor decomposition of the data, we illustrate the usefulness of
exploiting the natural three-dimensional structure of temporal link data. Through several nu-

merical experiments, we demonstrate that both matrix- and tensor-based techniques are effective

for temporal link prediction despite the inherent difficulty of the problem. Additionally, we show
that tensor-based techniques are particularly effective for temporal data with varying periodic

patterns.

Categories and Subject Descriptors: G.1.3 [Numerical Analysis]: Numerical Linear Algebra;
G.1.10 [Numerical Analysis]: Applications; H.2.8 [Database Management]: Database Ap-

plications—Data mining

General Terms: Algorithms

Additional Key Words and Phrases: link mining, link prediction, evolution, tensor factorization,

CANDECOMP, PARAFAC

1. INTRODUCTION

The data in different analysis applications such as social networks, communication
networks, web analysis, and collaborative filtering consists of relationships, which
can be considered as links, between objects. For instance, two people may be linked
to each other if they exchange emails or phone calls. These relationships can be
modeled as a graph, where nodes correspond to the data objects (e.g., people) and
edges correspond to the links (e.g., a phone call was made between two people).
The link structure of the resulting graph can be exploited to detect underlying
groups of objects, predict missing links, rank objects, and handle many other tasks

Author Addresses: D. Dunlavy, Sandia National Laboratories, Albuquerque, NM

87123-1318, dmdunla@sandia.gov. T. Kolda, Sandia National Laboratories, Livermore,
CA 94551-9159, tgkolda@sandia.gov. E. Acar, TUBITAK-UEKAE, Gebze, Turkey

evrim.acar@bte.tubitak.gov.tr.

Preprint submitted for publication, May 24, 2010

ar
X

iv
:1

00
5.

40
06

v1
 [

m
at

h.
N

A
]

 2
1

M
ay

 2
01

0

2 · D. M. Dunlavy, T. G. Kolda, and E. Acar

[Getoor and Diehl 2005].
Dynamic interactions over time introduce another dimension to the challenge of

mining and predicting link structure. Here we consider the task of link prediction
in time. Given link data for T time steps, can we predict the relationships at time
T + 1? This problem has been considered in a variety of contexts [Hasan et al.
2006; Liben-Nowell and Kleinberg 2007; Sarkar et al. 2007]. Collaborative filtering
is also a related task, where the objective is to predict interest of users to objects
(movies, books, music) based on the interests of similar users [Liu and Kou 2007;
Koren et al. 2009]. The temporal link prediction problem is different from missing
link prediction, which has no temporal aspect and where the goal is to predict
missing connections in order to describe a more complete picture of the overall link
structure in the data [Clauset et al. 2008].

We extend the problem of temporal link prediction stated above to the problem
of periodic temporal link prediction. For such problems, given link data for T time
steps, can we predict the relationships at times T + 1, T + 2, . . . , T + L, where L
is the length of the periodic pattern? Such problems often arise in communication
networks, such as e-mail and network traffic data, where weekly or monthly interac-
tion patterns abound. If we can discover a temporal pattern in the data, temporal
forecasting methods such as Holt-Winters [Chatfield and Yar 1988] can be used to
make predictions further out in time.

Time-evolving link data can be organized as a third-order tensor, or multi-
dimensional array. In the simplest case, we can define a tensor Z of size M ×N ×T
such that

Z(i, j, t) =

{
1 if object i links to object j at time t,

0 otherwise.

It is also possible to use weights to indicate the strength of the links. The goal is to
predict the links at time T + 1 or for a period time T + 1, . . . , T + L by analyzing
the link structure of Z.

Figure 1 presents an illustration of such temporal link data for the 1991–2000
DBLP bibliometric data set, which contains publication data for a large number
of professional conferences in areas related to computer science (described in more
detail in §4). The plot depicts the patterns of links between authors and conferences
over time, with blue dots denoting the links (i.e., values of 1 as defined above).

We consider both matrix- and tensor-based methods for link prediction. For the
matrix-based methods, we collapse the data into a single matrix by summing (with
and without weights) the matrices corresponding to the time slices. As a baseline,
we consider a low-rank approximation as produced by a truncated singular value
decomposition (TSVD). Next, we consider the Katz method [Katz 1953] (extended
to bipartite graphs), which has proven to be highly accurate in previous work on
link prediction [Huang et al. 2005; Liben-Nowell and Kleinberg 2007; Huang and Lin
2009]; however, it is not always clear how to make the method scalable. Therefore,
we present a novel scalable technique for computing approximate Katz scores based
on a truncated spectral decomposition (TKatz). For the tensor-based methods, we
consider the CANDECOMP/PARAFAC (CP) tensor decomposition [Carroll and
Chang 1970; Harshman 1970], which does not collapse the data but instead retains
its natural three-dimensional structure. Tensor factorizations are higher-order ex-

Temporal Link Prediction · 3

Fig. 1: DBLP Data for 1991–2000.

tensions of matrix factorizations that capture the underlying patterns in multi-way
data sets and have proved to be successful in diverse disciplines including chemo-
metrics, neuroscience and social network analysis [Acar and Yener 2009; Kolda and
Bader 2009]. Moreover, CP yields a highly interpretable factorization that includes
a time dimension. In terms of prediction, the matrix-based methods are limited to
temporal prediction for a single time step, whereas CP can be used in solving both
single step and periodic temporal link prediction problems.

There are many possible applications for link prediction, such as predicting the
web pages a web surfer may visit on a given day based on past browsing history,
the places that a traveler may fly to in a given month, or the patterns of computer
network traffic. We consider two applications for link prediction. First, we con-
sider computer science conference publication data with a goal of predicting which
authors will publish at which conferences in year T + 1 given the publication data
for the previous T years. In this case, we assume we have M authors and N confer-
ences. All of the methods produce scores for each (i, j) author-conference pair for a
total of MN prediction scores for year T+1. For large values of M or N , computing
all possible scores is impractical due to the large memory requirements of storing
all MN scores. However, we note that it is possible to easily compute subsets of
the scores. For example, these methods can answer specific questions such as “Who
is most likely to publish at the KDD conference next year?” or “Where is Christos
Faloutsos most likely to publish next year?” using only O(M +N) memory. This
is how we envision link prediction methods being used in practice. Second, we
consider the problem of how to predict links when periodic patterns exist in the
data. For example, we consider a simulated example where data is taken daily over
ten weeks. We should be able to recognize, for example, weekday versus weekend
patterns and use those in making predictions. If we consider a scenario of users
accessing various online services, we should be able to differentiate between services
that are heavily accessed on weekdays (e.g., corporate email) versus those that are
used mostly on weekends (e.g., entertainment services).

4 · D. M. Dunlavy, T. G. Kolda, and E. Acar

1.1 Our Contributions

The main contributions of this paper can be summarized as follows:
• Weighted methods for collapsing temporal data into a matrix are shown to out-

perform straight summation (inspired by the results in [Sharan and Neville 2008])
in the case of single step temporal link prediction.

• The Katz method is extended to the case of bipartite graphs and its relationship
to the matrix SVD is derived. Additionally, using the truncated SVD, we devise
a scalable method for calculating a “truncated” Katz score.

• The CP tensor decomposition is applied to temporal data. We provide both
heuristic- and forecasting-based prediction methods that use the temporal infor-
mation extracted by CP.

• Matrix- and tensor-based methods are compared on DBLP bibliometric data in
terms of link prediction performance and relative expense.

• Tensor-based methods are applied to periodic temporal data with multiple period
patterns. Using a forecasting-based prediction method, it is shown how the
method can be used to predict forward in time.

1.2 Notation

Scalars are denoted by lowercase letters, e.g., a. Vectors are denoted by boldface
lowercase letters, e.g., a. Matrices are denoted by boldface capital letters, e.g., A.
The rth column of a matrix A is denoted by ar. Higher-order tensors are denoted
by boldface Euler script letters, e.g., Z. The tth frontal slice of a tensor Z is denoted
Zt. The ith entry of a vector a is denoted by a(i), element (i, j) of a matrix A
is denoted by A(i, j), and element (i, j, k) of a third-order tensor Z is denoted by
Z(i, j, k).

1.3 Organization

The organization of this paper is as follows. Matrix techniques are presented in §2,
including a weighted method for collapsing the tensor into matrix in §2.1, the TSVD
method in §2.2, and the Katz and TKatz methods in §2.3. The CP tensor technique
is presented in §3. Numerical results on the DBLP data set are discussed in §4 and
on simulated periodic data in §5. We discuss related work in §6. Conclusions and
future work are discussed in §7.

2. MATRIX TECHNIQUES

We consider different matrix techniques by collapsing the matrices over time into
a single matrix. In §2.1, we present two techniques (unweighted and weighted)
for combining the multi-year data into a single matrix. In §2.2, we present the
technique of using a truncated SVD to generate link scores. In §2.3, we extend the
Katz method to bipartite graphs and show how it can be computed efficiently using
a low-rank approximation.

2.1 Collapsing the data

Suppose that our data set consists of matrices Z1 through ZT of size M ×N and
the goal is to predict ZT+1. The most straightforward way to collapse that data

Temporal Link Prediction · 5

into a single M ×N matrix X is to sum all the entries across time, i.e.,

X(i, j) =

T∑
t=1

Zt(i, j). (1)

We call this the collapsed tensor (CT) because it collapses (via a sum) the entries of
the tensor Z along the time mode. This is similar to the approach in [Liben-Nowell
and Kleinberg 2007].

We propose an alternative approach to collapsing the tensor data, motivated by
[Sharan and Neville 2008], where the link structure is damped backward in time
according to the following formula:

X(i, j) =

T∑
t=1

(1− θ)T−t Zt(i, j). (2)

The parameter θ ∈ (0, 1) can be chosen by the user or according to experiments
on various training data sets. We call this the collapsed weighted tensor (CWT)
because the slices in the time mode are weighted in the sum. This gives greater
weight to more recent links. See Figure 2 for a plot of f(t) = (1− θ)T−t for θ = 0.2
and T = 10.

Fig. 2: Plot of the decay function f(t) = (1− θ)T−t for θ = 0.2 and T = 10.

The numerical results in §4 demonstrate improved performance using CWT ver-
sus CT.

2.2 Truncated SVD

One of the methods compared in this paper is a low-rank approximation of the
matrix X produced by (1) or (2). Specifically, suppose that the compact SVD of
X is given by

X = UΣVT, (3)

whereR is the rank of X, U and V are orthogonal matrices of sizesM×R andN×R,
respectively, and Σ is a diagonal matrix of singular values σ1 > σ2 > · · · > σR > 0.
It is well known that the best rank-K approximation of X is then given by the
truncated SVD

X ≈ UKΣKVK , (4)

6 · D. M. Dunlavy, T. G. Kolda, and E. Acar

where UK and VK comprise the first K columns of U and V and ΣK is the K×K
principal submatrix of Σ. We can write (4) as a sum of K rank-1 matrices:

X ≈
K∑
k=1

σkukv
T
k ,

where uk and vk are the kth columns of U and V respectively. The TSVD is
visualized in Figure 3.

Fig. 3: Illustration of the matrix TSVD.

A matrix of scores for predicting future links can then be calculated as

S = UKΣKVK . (5)

We call these the Truncated SVD (TSVD) scores. Low-rank approximations based
on the matrix SVD have proven to be an effective technique in many data appli-
cations; latent semantic indexing [Dumais et al. 1988] is one such example. This
technique is called “low-rank approximation: matrix entry” in [Liben-Nowell and
Kleinberg 2007].

2.3 Katz

The Katz measure [Katz 1953] is arguably one of the best link predictors available
because it has been shown to outperform many other methods [Liben-Nowell and
Kleinberg 2007]. Suppose that we have an undirected graph G(V,E) on P = |V |
nodes. Then the Katz score of a potential link between nodes i and j is given by

Ŝ(i, j) =

+∞∑
`=1

β`|path
(`)
i,j |, (6)

where |path
(`)
i,j | is the number of paths of length ` between nodes i and j, and

β ∈ (0, 1) is a user-defined parameter controlling the extent to which longer paths
are penalized.

The Katz scores for all pairs of nodes can be expressed in matrix terms as follows.
Let X̂ be the P ×P symmetric adjacency matrix of the graph. Then the scores are
given by

Ŝ =

+∞∑
`=1

β`X̂
`

= (I− βX̂)−1 − I. (7)

Here I is the P ×P identity matrix. If the graph under consideration has weighted
edges, X̂ is replaced by a weighted adjacency matrix.

We address two problems with the formulation of the Katz measure. First, the
method is not scalable because it requires the inversion of a P×P matrix at a cost of

Temporal Link Prediction · 7

O(P 3) operations. We shall see that we can replace X̂ by a low-rank approximation
in order to compute the Katz scores more efficiently. Second, the method is only
applicable to square symmetric matrices representing undirected graphs. We show
that it can also be applied to our situation: a rectangular matrix representing a
bipartite graph.

2.3.1 Truncated Katz. Assume X̂ has rank R ≤ P . Let the eigendecomposition
of X̂ be given by

X̂ = ŴΛ̂Ŵ
T
, (8)

where Ŵ is a P × P orthogonal matrix1 and Λ̂ is a diagonal matrix with |λ̂1| ≥
|λ̂2| ≥ · · · ≥ |λ̂R| > λ̂R+1 = · · · = λ̂P = 0. Then the Katz scores in (7) become

Ŝ = (I− βŴΛ̂Ŵ
T

)−1 − I

= Ŵ
[
(I− βΛ̂)−1 − I

]
Ŵ

T
= ŴΓ̂Ŵ

T
,

where Γ̂ is a P × P diagonal matrix with diagonal entries

γ̂p =
1

1− βλ̂p
− 1 for p = 1, . . . , P.

Observe that γ̂p = 0 for p > R. Therefore, without loss of generality, we can assume

that Ŵ and Γ̂ are given in compact form, i.e., Γ̂ is just an R×R diagonal matrix
and Ŵ is a P ×R orthogonal matrix.

This shows a close relationship between the Katz measure and the eigendecom-
position and gives some hint as to how to incorporate a low-rank approximation.
The best rank-L approximation of X̂ is given by replacing Λ̂ in (8) with a matrix
Λ̂L where all but the L largest magnitude diagonal entries are set to zero. The
mathematics carries through as above, and the end result is that the Katz scores
based on the rank-L approximation are

Ŝ = ŴLΓ̂LŴ
T

L

where Γ̂L is the L × L principal submatrix of Γ̂, and ŴL is the P × L matrix
containing the first L columns of Ŵ.

Since it is possible to construct a rank-L approximation of the adjacency matrix
in O(L|E|) operations (using an Arnoldi or Lanczos technique [Saad 1992]), this
technique can be applied to large-scale problems at a relatively low cost. We note
that in [Liben-Nowell and Kleinberg 2007], Katz is applied to a low-rank approxi-
mation of the adjacency matrix which is equivalent to what we discuss here, but its
computation is not discussed — specifically, the fact that it can be computed effi-
ciently via the formula above is not mentioned. Thus, we assume that calculation
was done directly on the dense low-rank approximation matrix given by

X̂L = ŴLΛ̂LŴ
T

L.

1Recall that if W is an orthogonal matrix W, then WWT = WTW = I, W−1 = WT, and

(WT)−1 = W.

8 · D. M. Dunlavy, T. G. Kolda, and E. Acar

We contrast this with the approach of Wang et al. [2007] who discuss an approx-
imate Katz measure given by truncating the sum in (6) to the first L terms (they

recommend L = 4), i.e., Ŝ =
∑4
`=1 β

`X̂
`
; the main drawback of this approach is

the power matrices may be dense, depending on the connectivity of the graph.

2.3.2 Bipartite Katz & Truncated Bipartite Katz. Our problem is different than
what we have discussed so far because we are considering a bipartite graph, repre-
sented by a weighted adjacency matrix from (1) or (2). This can be considered as
a graph on P = M +N nodes where the weighted adjacency matrix is given by

X̂ =

[
0 X

XT 0

]
.

If X is rank R and its SVD is given as in (3), then the eigenvectors and eigenvalues
of X̂ are given by

Ŵ =

[
1√
2
U − 1√

2
U

1√
2
V 1√

2
V

]
and Λ̂ =

[
Σ 0
0 −Σ

]
.

Note that the eigenvalues in Λ̂ are not sorted by magnitude and the rank of X̂ is
2R. The square matrix of Katz scores is given by

Ŝ =

[
0 UΓVT

VΓUT 0

]
,

where Γ is a diagonal matrix with entries

γp =
1

1− βσp
− 1 for p = 1, . . . , R. (9)

The link scores for the bipartite graph can be extracted and are given by

S = UΓVT. (10)

We call these the Katz scores.
We can replace X by its best rank-K approximation as in (4), and the resulting

Katz scores then become

S = UKΓKVT
K , (11)

where ΓK is the K × K principal submatrix of Γ. We call these the Truncated
Katz (TKatz) scores. It is interesting to note that TKatz is very similar to using
TSVD except that the diagonal weights have been changed. Related methods for
scaling have also been proposed in the area of information retrieval (e.g., [Bast and
Majumdar 2005; Yan et al. 2008]) where exponential scaling of singular values led
to improved performance.

2.4 Computational Complexity and Memory

Computing a sparse rank-K TSVD via an Arnoldi or Lanczos method requires
O(nnz(X)) work per iteration where nnz(X) is the number of nonzeros in the ad-
jacency matrix X, which is equal to the number of edges in the bipartite graph.
The number of iterations is typically a small multiple of K but cannot be known
in advance. The storage of the factorization requires only K(M +N + 1) space for

Temporal Link Prediction · 9

the singular values and two factor matrices. Because TKatz is based on the TSVD,
it requires the same amount of computation and storage for a rank-K approxima-
tion. The only difference is that TKatz stores ΓK rather than ΣK . Katz, on the
other hand, requires O(M2N +MN2 +N3) operations to compute (7) if M > N .
Furthermore, it stores all of the scores explicitly, using O(MN) storage.

3. TENSOR TECHNIQUES

The data set consisting of matrices Z1 through ZT is three-way, so this lends itself
to a multi-dimensional interpretation. By analyzing this data set using a three-way
model, we can explicitly model the time dimension and have no need to collapse
the data as discussed in §2.1.

3.1 CP Tensor Model

One of the most common and useful tensor models is CP [Carroll and Chang 1970;
Harshman 1970]; see also reviews [Acar and Yener 2009; Kolda and Bader 2009].
Given a three-way tensor Z of size M×N×T , its K-component CP decomposition
is given by

Z ≈
K∑
k=1

λk ak ◦ bk ◦ ck. (12)

Here the symbol ◦ denotes the outer product2, λk ∈ R+, ak ∈ RM , bk ∈ RN , and
ck ∈ RT for k = 1, . . . ,K. Each summand (λk ak ◦ bk ◦ ck) is called a component,
and the individual vectors are called factors. We assume ‖ak ‖ = ‖bk ‖ = ‖ ck ‖ = 1
and therefore λk contains the scalar weight of the kth component. An illustration
of CP is shown in Figure 4.

The CP tensor decomposition can be considered an analogue of the SVD because
it decomposes a tensor as a sum of rank-one tensors just as the SVD decomposes a
matrix as a sum of rank-one matrices as shown in Figure 3. Nevertheless, there are
also important differences between these decompositions. The columns of U and
V are orthogonal in the SVD while there is no orthogonality constraint in the CP
model. Despite the CP model’s lack of orthogonality, Kruskal [Kruskal 1989; Kolda
and Bader 2009] has shown that CP components are unique, up to permutation
and scaling, under mild conditions. It is because of this property that we use CP
model in our studies. The uniqueness of CP enables the use of factors directly for
forecasting as discussed in §3.3. On the other hand, some other tensor models such
as Tucker [Tucker 1963; 1966] suffers from rotational freedom and factors in the
time mode, thus the forecasts, can easily change depending on the rotation applied
to the factors. We leave whether or not such models would be applicable for link
prediction as a topic of future research.

3.2 CP Scoring using a Heuristic

We make use of the components extracted by the CP model to assign scores to
each pair (i, j) according to their likelihood of linking in the future. The outer
product of ak and bk, i.e., akb

T
k , quantifies the relationship between object pairs

2A three way outer product is defined as follows: X = a ◦ b ◦ c means X(i, j, k) = a(i)b(j)c(k).

10 · D. M. Dunlavy, T. G. Kolda, and E. Acar

Fig. 4: Illustration of the tensor CP model.

in component k. The temporal profiles are captured in the vectors ck. Different
components may have different trends, e.g., they may have increasing, decreasing,
or steady profiles. In our heuristic approach, we assume that average activity in
the last T0 = 3 years is a good choice for the weight. We define the similarity score
for objects i and j using a K-component CP model in (12) as the (i, j) entry of the
following matrix:

S =

K∑
k=1

γkλkakb
T
k , where γk =

1

T0

T∑
t=T−T0+1

ck(t). (13)

This is a simple approach, using temporal information from the last T0 = 3 time
steps only. In many cases, the simple heuristic of just averaging the last few time
steps works quite well and is sufficient. An alternative that provides a more sophis-
ticated use of time is discussed in the next section.

3.3 CP Scoring using Temporal Forecasting

Alternatively, we can use the temporal profiles computed by CP as a basis for
predicting the scores in future time steps. In this work, we use the Holt-Winters
forecasting method [Chatfield and Yar 1988], which is particularly suitable for time-
series data with periodic patterns. This is an automatic method which only requires
the data and the expected period (e.g., we use L = 7 for daily data). As will be
shown in §5, the Holt-Winters method is fairly accurate in picking up patterns in
time and therefore can be used as a predictive tool. If we are predicting for L
time steps in the future (one period), we get a tensor of prediction scores of size
M ×N × L. This is computed as

S =

K∑
k=1

λkak ◦ bk ◦ γk (14)

where each γk is a vector of length L that is the prediction for the next L time
steps from the Holt-Winters methods with ck as input.

For our studies, we implemented the additive Holt-Winters method (as described
in Chatfield and Yar [1988]), i.e., Holt’s linear trend model with additive seasonality,
which corresponds to an exponential smoothing method with additive trend and
additive seasonality. For a review of exponential smoothing methods, see [Gardner
2006]. An example of forecasting using additive Holt-Winters is shown in Figure 5.
The input is shown in blue, and the prediction of the next L = 7 time steps is
shown in red. We show examples in §5 that use the actual CP data as input.
Forecasting methods beside the Holt-Winters method have also proven useful in
analyzing temporal data [Makridakis and Hibon 2000]. Work on the applicability

Temporal Link Prediction · 11

Fig. 5: An illustration of the predictions produced by the additive Holt-Winters method on data
with a period of L = 7.

of different forecasting methods for link prediction is left for future work.

3.4 Computational Complexity and Memory

The computational complexity of CP is O(nnz(Z)) per iteration. As with TSVD,
we cannot predict the number of iterations in advance. The storage required for
CP is K(M +N + T + 1), for the three factor matrices and the scalar λk values.

4. EXPERIMENTS WITH LINK PREDICTION FOR ONE TIME STEP

We use the DBLP data set3 to assess the performance of various link predictors
discussed in §2 and §3. All experiments were performed using Matlab 7.8 on a
Linux Workstation (RedHat 5.2) with 2 Quad-Core Intel Xeon 3.0GHz processors
and 32GB RAM. We compute the CP model via an Alternating Least Squares
(ALS) approach using the Tensor Toolbox for Matlab [Bader and Kolda 2007].

4.1 Data

At the time the DBLP data was downloaded for this work, it contained publications
from 1936 through the end of 2007. Here we only consider publications of type
inproceedings between 1991 and 20074.

The data is organized as a third-order tensor Z of size M×N×T . We let C(i, j, t)
denote the total number of papers by author i at conference j in year t. In order
to decrease the effect of large numbers of publications, we preprocess the data so
that

Z(i, j, t) =

{
1 + log(C(i, j, t)) if C(i, j, t) > 0,

0 otherwise.

3http://www.informatik.uni-trier.de/~ley/db/index.html
4The publications between 1936 and 1990 comprise only 6% of publications of type inproceedings.

12 · D. M. Dunlavy, T. G. Kolda, and E. Acar

Training Test Authors Confs. Training Links Test Links Test New Links
Years Year (% Density) (% Density) (% Density)

1991-2000 2001 7108 1103 112,730 (0.14) 12,596 (0.16) 5,079 (0.06)

1992-2001 2002 8368 1211 134,538 (0.13) 16,115 (0.16) 6,893 (0.07)

1993-2002 2003 9929 1342 162,357 (0.12) 20,261 (0.15) 8,885 (0.07)

1994-2003 2004 11836 1491 196,950 (0.11) 27,398 (0.16) 12,738 (0.07)

1995-2004 2005 14487 1654 245,380 (0.10) 35,089 (0.15) 16,980 (0.07)

1996-2005 2006 17811 1806 308,054 (0.10) 40,237 (0.13) 19,379 (0.06)

1997-2006 2007 21328 1934 377,202 (0.09) 41,300 (0.10) 20,185 (0.05)

Table I: Training and Test set pairs formed from the DBLP data set.

Using a sliding window approach, we divide the data into seven training/test sets
such that each training set contains T = 10 years and the corresponding test set
contains the following 11th year. Table I shows the size and density of the training
and testing sets. We only keep those authors that have at least 10 publications
(i.e., an average of one per year) in the training data, and each test set contains
only the authors and conferences available in the corresponding training set.

4.2 Interpretation of CP

Before addressing the link prediction problem, we first discuss how to use the CP
model for exploratory analysis of the temporal data. The primary advantage of
the CP model is its interpretability, as illustrated in Figure 6, which contains three
example components from the 50-component CP model of the tensor representing
publications from 1991 to 2000. The factor ak captures a certain group of au-
thors while bk extracts the conferences, where the authors captured by ak publish.
Finally, ck corresponds to the temporal signature, depicting the pattern of the
publication history of those authors at those conferences over the associated time
period. Therefore, the CP model can address the link prediction problem well by
capturing the evolution of the links between objects using the factors in the time
mode.

Figure 6a shows the third component with authors (ak) in the top plot, con-
ferences (bk) in the middle, and time (ck) on the bottom. The highest scoring
conferences are DAC, ICCAD and ICCD, which are related conferences on com-
puter design. Many authors publish in these conferences between 1991 and 2000,
but the top are Vincentelli, Brayton, and others listed in the caption. This au-
thor/conference combination has a peak in the early 1990s and starts to decline in
mid-’90s. Note that the author and conference scores are mostly positive. Figure 6b
shows another example component, which actually has very similar conferences to
those in the component discussed above. The leading authors, however, are dif-
ferent. Moreover, the time profile is different with an increasing trend after the
mid-’90s. Figure 7 shows a component that detects related conferences that take
place only in even years. Again we see that the components are primarily positive.
A nice feature of the CP model is that it does not have any constraints (like or-
thogonality in the SVD) that artificially impose a need for negative entries in the
components.

Temporal Link Prediction · 13

(a) Factors from component 3: Top authors are Alberto

L. Sangiovanni Vincentelli, Robert K. Brayton, Sudhakar
M. Reddy, and Irith Pomeranz. Top conferences are

DAC, ICCAD, and ICCD.

(b) Factors from component 4: Top authors are Miodrag
Potkonjak, Massoud Pedram, Jason Cong, and Andrew
B. Kahng. Top conferences are DAC, ICCAD, and AS-

PDAC.

Fig. 6: Examples from 50-component CP model of publications from 1991 to 2000.

4.3 Methods and Parameter Selection

The goal of a link predictor in this study is to predict whether the ith author is
going to publish at the jth conference during the test year. Therefore, each nonzero
entry in the test set is treated as 1, i.e., a positive link, regardless of the actual
number of publications; otherwise, it is 0 indicating that there is no link between
the corresponding author-conference pair.

The common parameter for all link predictors, except Katz-CT/CWT, is the
number of components, K. In our experiments, instead of using a specific value of
K, which cannot be determined systematically, we use an ensemble approach. Let

14 · D. M. Dunlavy, T. G. Kolda, and E. Acar

Fig. 7: Factors from component 46 of 50-component CP model of publications from 1991 to 2000:
Top authors are Franz Baader, Henri Prade, Didier Dubois, and Bernhard Nebel. Top conferences

are ECAI and KR.

SK denote the matrix of scores computed for K = 10, 20, ...100. Then the matrix
of ensemble scores, S, used for link prediction is calculated as

S =
∑

K∈{10,20,...100}

SK
‖SK ‖F

.

In addition to the number of components, the parameter β used in the Katz scores
in (10) and (11) needs to be determined. We use β = 0.001, which was chosen
such that γp > 0 for all p = 1, . . . , R in (9) for the data in our experiments. We
have observed that if γp < 0 then the scores contain entries with large magnitudes
but negative values, which degrades the performance of Katz measure. Finally,
θ is the parameter used for weighting slices while forming the CWT in (2). We
set θ = 0.2 according to preliminary tests on the training data sets. We use the
heuristic scoring method discussed in §3.2 for CP.

4.4 Link Prediction Results

Two different experimental set-ups are used to evaluate the performance of the
methods.

Predicting All Links: The first approach compares the methods in terms of how
well they predict positive links in the test set.

Predicting New Links: The second approach addresses a more challenging prob-
lem, i.e., how well the methods predict the links that have not been previously
seen at any time in the training set.

As an evaluation metric for link prediction performance, we use the area under
the receiver operating characteristic curve (AUC) because it is viewed as a robust
measure in the presence of imbalance [Stager et al. 2006], which is important since
less than 0.2% of all possible links exist in our testing data. Figure 8 shows the
performance of each link predictor in terms of AUC when predicting all links (blue
bars) and new links (red bars). As expected, the AUC values are much lower for

Temporal Link Prediction · 15

Fig. 8: Average link prediction performance of each method across all seven training/test set pairs

(black bars show absolute range).

(a) Prediction of all links in the test sets. (b) Prediction of new links in the test sets.

Fig. 9: Average ROC curves showing the performance of link prediction methods across all train-

ing/test sets.

the new links. Among all methods, the best performing method in terms of AUC is
Katz-CWT. Further, CWT is consistently better on average than the corresponding
CT methods, which shows that giving more weight to the data in recent years
improves link prediction.

In Figure 9, we show the ROC (receiver operating characteristic) curves; for the
purposes of clarity, we omit the CT results. When predicting all links, Figure 9a
shows that all methods perform similarly initially, but Katz-CWT is best as the
false positive rate increases. TKatz-CWT and TSVD-CWT are only slightly worse
than Katz-CWT. Finally, CP starts having false-positives earlier than the other
methods. Figure 9b shows the behavior for just the new links. In this case, the
relative performance of the algorithms is mostly unchanged.

In order to understand the behavior of different link predictors better, we also
compute how many correct links (true positives) are in the top 1000 scores predicted

16 · D. M. Dunlavy, T. G. Kolda, and E. Acar

Test CP TSVD TSVD TKatz TKatz Katz Katz
Year -CT -CWT -CT -CWT -CT -CWT

All Links

2001 671 617 685 611 684 629 705
2002 668 660 674 656 672 668 713
2003 723 697 743 693 748 708 755

2004 783 726 777 724 773 723 780
2005 755 716 776 718 770 706 780
2006 807 729 801 731 796 706 798

2007 721 681 755 682 753 656 731

Mean 733 689 744 688 742 685 752

New Links

2001 87 80 104 79 107 55 77

2002 97 84 124 88 124 86 104
2003 78 80 96 82 102 67 75

2004 99 79 105 85 105 70 82
2005 116 89 117 90 117 67 89
2006 91 77 110 75 109 69 92

2007 83 71 95 73 99 49 67

Mean 93 80 107 82 109 66 84

Table II: Correct predictions in top 1000 scores.

by each method. Table II shows that CP, TSVD-CWT, TKatz-CWT and Katz-
CWT achieve close to 75% accuracy over all links. The accuracy of the methods
goes down to 10% when we remove all previously seen links from the test set, but
this is still very significant. Although 10% accuracy may seem low, this is still two
orders of magnitude better than what would be expected by chance (0.1%) due to
high imbalance in the data (see the last column of Table I). Note that the best
methods in terms of AUC, i.e., Katz-CT and Katz-CWT, perform worse than CP,
TSVD-CWT and TKatz-CWT for predicting new links. We also observe that CP
is among the best methods when we look at the top predictions even if it starts
giving false-positives earlier than other methods.

The TSVD and TKatz methods are quite fast relative to the CP and Katz meth-
ods. Average timings across all training sets are TSVD-CT/CWT and TKatz-
CT/CWT: 60 sec.; CP: 1300 sec.; Katz-CT: 1600; and Katz-CWT: 2100 sec. The
differences for Katz are due to the number of iterations required for the SVD.

5. EXPERIMENTS WITH LINK PREDICTION FOR MULTIPLE TIME STEPS

As might be evident from Figures 6 and 7, the utility of tensor models is in their
ability to reveal patterns in time. In this section, we use synthesized data to explore
the ramifications of temporal predictions in situations where there are several differ-
ent periodic patterns in the data. In particular, Figure 7 shows an every other year
pattern in the data, but this is not exploited in the predictions in the last section
based on the heuristic score in (13). In the DBLP data set, periodic time profiles
were few and did not have noticeable impact on performance. Here we simulate the
type of data where bringing the time pattern information into play is crucial for
predictions. Our goal is to use the periodic information, predicting even further out
in time. For example, if we assume that our training data is for times t = 1, . . . , T

Temporal Link Prediction · 17

and that the period in our data is of length L, then we can predict connections for
time periods T +1 through T +L. In this section, we present results of experiments
involving link prediction for multiple time steps. All experiments were performed
using Matlab 7.9 on a Linux Workstation (RedHat 5.2) with 2 Quad-Core Intel
Xeon 3.0GHz processors and 32GB RAM.

5.1 Data

We generate simulated data that shows connections between two sets of entities over
time. In the DBLP data, the entity sets were authors and conferences and each time
t = 1, . . . , T corresponded to one year of data. In our simulated example, we assume
that each time t corresponds to one day and that the temporal profiles correspond
roughly to a seven-day period (L = 7). We might assume that the entities are
users and services. For example, most major service providers (Yahoo, Google,
MSN, etc.) have a front page. We may wish to predict which users will likely be
connecting to which services over time. For example, it may be that there are groups
of people that check the National, World, and Business News on weekdays; another
group that checks Entertainment Listings on weekends; a group that checks Sports
Scores on Mondays; another group uses the service for email every day, etc. Each of
these groupings of users and services along with corresponding temporal profile can
be represented by a single component in the tensor model. The motivation for link
prediction are many-fold. We might want to characterize the temporal patterns so
that we know how often to update the services or when to schedule down time.
We may use prediction to cache certain data, to better direct advertisements to
users, etc. In addition to the business model/motivation, we could also consider
the application of cybersecurity using analysis of network traffic data. In this case,
the goal is to determine which computers are most likely to contact which other
computers. Predicted links could be used to find anomalous or malicious behavior,
proactively load balance, etc. In all of these applications, accurately predicting
links over multiple time steps is crucial.

We assume that our data can be modeled by K = 10 components and generate
our training and testing tensors as follows.

(1) Matrices A and B of size M×K and N×K are “entity participation” matrices.
In other words, column ak (resp. bk) is the vector of participation levels of all
the entities in component k. In our tests, we use M = 500 and N = 400. Each
row is generated by choosing between 1 and K components for the entity to
participate in where the probability of participating in at least k+1 components
is 1−4k. An example of the distribution of participation is shown in Figure 10;
note that most entities participate in just one component. Once the number of
components is decided, the specific components that a given entity participates
in are chosen uniformly at random. The strength of participation is picked
uniformly at random between 1 and 10. Finally, the columns of A and B are
normalized to length 1.

(2) In the third mode, the matrix corresponds to time. We assume we have P
periods of training data, so that we have T = LP time observations to train
on. In our tests, we use L = 7 and P = 10. We also assume that we have 1
period of testing data. Therefore, we generate a matrix C of size L(P +1)×K,

18 · D. M. Dunlavy, T. G. Kolda, and E. Acar

Fig. 10: Example distribution of the number of nonzeros per row in entity participation matrices.

Fig. 11: Weekly patterns of users in simulated data.

which will be divided into submatrices C[train] and C[test]. Each column of C
is temporal data of length L(P + 1) with a repeating period of length L = 7.
We use the periodic patterns shown in Figure 11. For example, the first patten
corresponds to a weekday pattern, and the seventh pattern corresponds to
Tuesday/Thursday activities. Patterns 1 and 5 are the same but correspond to
different sets of entities and so will still be computable in our experiments.

The creation of the temporal data is shown in Figure 12. As shown at the
top, in order to generate the temporal data of length L(P + 1), we repeat the
temporal pattern P + 1 times. Next, for each of the K = 10 components, we
randomly adjust the data to be increasing, decreasing, or neutral. On the left
in the middle plot, we show a decreasing pattern and on the right an increasing
pattern. Finally, we add 10% noise, as shown in the lower plots. The final
matrix C is column normalized. The first T = LP = 70 rows become C[train]

and the last L = 7 rows become C[test].

Temporal Link Prediction · 19

(a) Pattern 3 and a decreasing trend (b) Pattern 1 and an increasing trend

Fig. 12: Steps to creating the temporal data.

(3) We create noise-free versions of the training and testing tensors by computing

Z[train] =

K∑
k=1

ak ◦ bk ◦ c
[train]
k and Z[test] =

K∑
k=1

ak ◦ bk ◦ c
[test]
k .

In order to make the problem challenging, we significantly degrade the training
data in the next two steps.

(4) We take pswap = 50% of the ptop = 25% largest entries in Z[train] and randomly
swap them with other entries in the tensor selected uniformly at random. This
has the effect of removing some important data (i.e., large entries) and also
adding some spurious data.

(5) Finally, we add prand = 10% percent standard normal noise to every entry of

Z[train].

For each problem instance, we compute a CP decomposition of Z[train] which has
had large entries swapped and noise added. Then we use the resulting factorization
to predict the largest entries of Z[test].

5.2 Methods and Parameter Selection

The goal of this study is to predict the significant entries in Z[test]. Therefore,
without loss of generality, we treat all nonzeros in the test tensor as ones (i.e.,
positive links) and the rest as zeros (i.e., no link). This results in 15% positives.

We consider the CP model (with K = 10 components) using the forecasting
scoring model described in §3.3. The model parameters for level, trend and sea-
sonality are set to 0.2 in the Holt-Winters method. We compute the CP model
via the CPOPT approach as described in [Acar et al. 2009]. This is an optimiza-
tion approach using the nonlinear conjugate gradient method. We set the stopping
tolerance on the normalized gradient to be 10−8, the maximum number of itera-
tions to 1000, and the maximum number of function values to 10,000. The models

20 · D. M. Dunlavy, T. G. Kolda, and E. Acar

could have been computed using ALS as in the previous section, but here we use a
different technique for variety.

The matrix methods described in §2 are not appropriate for this data because
simply collapsing the data will obviously not work. Moreover, there is no clear
methodology for predicting out in time. The best we could possibly do would be to
construct a matrix model for each day in the week (i.e., one for each ` = 1, . . . , L).
Such an approach, however, is not parsimonious and would quickly become pro-
hibitive as the number of models grew. Moreover, it would be extremely difficult
to assimilate results across the different models for each day.

Therefore, as a comparison, we use the largest values from the most recent period.
In MATLAB notation, the predictions are based on Z[train](:, :, L(P − 1) + 1 : LP),

i.e., the last L frontal slices of Z[train]. The highest values in that period are
predicted to reappear in the testing period. We call this the Last Period method.
Under the scenario considered here, this is an extremely predictive model when the
noise levels are low. As we randomly swap data (reflective of random additions and
deletions as would be expected in any real world data set), however, the performance
of this model degrades.

5.3 Interpretation of CP Results and Temporal Prediction

As mentioned above, we compute the CP factorization of a noisy version of Z[train]

of size 500× 400× 70. Because the data is noisy (swapping 50% of the 25% largest
entries and adding 10% Gaussian noise), the fit of the model to the data is not

perfect. In fact, the percentage of the Z[train] that is described by the model5 is
only about 50% (averaged over 10 instances).

However, the underlying low-rank structure of the data gives us hope of recovery
even in the presence of excessive errors. We can see this in terms of the factor
match score (FMS), which is defined as follows. Let the correct and computed
factorizations be given by

K∑
k=1

λk ak ◦ bk ◦ ck and

K∑
k=1

λ̄k āk ◦ b̄k ◦ c̄k,

respectively. Without loss of generality, we assume that all the vectors have been
scaled to unit length and that the scalars are positive. Recall that there is a
permutation ambiguity, so all possible matchings of components between the two
solutions must be considered. Under these conditions, the FMS is defined as

FMS = max
σ∈Π(K)

1

K

K∑
k=1

(
1−

|λr − λ̄σ(k)|
max{λr, λ̄σ(k)}

)
|aT
k āσ(k)||bT

k b̄σ(k)||cTk c̄σ(k)|. (15)

The set Π(K) consists of all permutations of 1 to K. In our case, we just use a
greedy method to determine an appropriate permutation. The FMS can be between
0 and 1, and the best possible FMS is 1. For the problems mentioned above, the
FMS scores are around 0.52 on average; yet the predictive power of the CP model
is very good (see §5.4).

5The percentage of the data described by the model is calculated as 1−‖M−Z[train]‖/‖Z[train]‖
where M is the CP model.

Temporal Link Prediction · 21

Figure 13 shows the ten different temporal patterns in the data per the ck vectors.
The green line is the original unaltered data, the first portion of which is used to
generate the training data. The blue line is the pattern that is extracted via the
CP model. Note that it is generally a good fit to the true data shown in green.
Finally, the red line is the prediction generated by the Holt-Winters method using
the pattern extracted by CP (i.e., the blue line). The red data corresponds to the
γk vectors used in (14) for link prediction. The results of the link prediction task
are discussed in the next subsection.

5.4 Link Prediction Results

In Figure 14, we present typical ROC curves for the predictions of the next L =
7 time steps (one period) for a problem instance generated using the procedure
mentioned above. As described in §5.2, our goal is to predict the nonzero entries in
the testing data Z[test] based on the CP model and the score in (14). We compare
with the predictions based on the last period in the data. Despite the high level
of noise, the CP method is able to get an AUC score of 0.845, which is much
better than then the “Last Period” method’s score of 0.686. We also considered
the accuracy in the first 1,000 values returned. The CP-based method is 100%
accurate in its top 1,000 scores whereas the “Last Period” method is only 70%
accurate.

To investigate the effect of noise on the performance of the CP and Last Period
methods, we ran several experiments varying the different amounts of noise (ptop,
pswap, and prand). For each experiments, we fixed all but one type of noise, varying
the remaining type of noise. The fixed values for each type of noise were the same
as those for the experiment described above, while varying ptop up to 30%, pswap up
to 80%, and prand up to 40%. For each level of noise, we generated 10 instances of
Z[train] and Z[test] and computed the average AUC and percentage of links correctly
predicted in the top 1000 scores.

Figure 15 shows the results of the experiments when varying pswap. As expected,
AUC values decrease as the number of the most significant links in the training data
being swapped randomly is increased. However, there is a clear advantage of the CP
method over the Last Period method as depicted in Figure 15a. Note also that in
Figure 15b, we see that even as the number of randomly swapped significant links is
increased in the training data, the top 1000 scores predicted with the CP method are
all correctly identified as links. For the Last Period method, performance decreases
as pswap increases, highlighting a clear advantage of the CP method. Figure 16 and
Figure 17 present the results for the experiments where ptop and prand were varied,
respectively. In both sets of experiments, the CP method consistently performed
better than the Last Period method in terms of both AUC and correct predictions in
the top 1000 scores for each method. However, no significant changes were detected
across the different levels of ptop and prand.

The key conclusions from these experiments is that the CP model performs ex-
tremely well even when a large percentage of the strongest signals (i.e., link infor-
mation) in the training data is altered. Such robustness is crucial for applications
where noise or missing data is common, e.g., analysis of computer network traffic
where data is lost or even hidden in the context of malicious behavior or the anal-
ysis of user-service relationships where both user and service profiles are changing

22 · D. M. Dunlavy, T. G. Kolda, and E. Acar

Fig. 13: Temporal patterns using Holt-Winters forecasting. The green line is the “true” data.
The blue line is the temporal pattern that is computed by CP. The red line is the pattern that is
predicted by Holt-Winters using the temporal pattern computed by CP.

over time.

Results for different sizes of tensors illustrate that these conclusions hold for larger
data sets as well. Figure 18 presents plots of (a) the time required to compute the
CP models and Holt-Winters forecasts and (b) the AUC scores for predicting seven
steps out in time for tensors of sizes 125× 100× 77, 250× 200× 77, 500× 400× 77
(M=500), 1000 × 800 × 77 (M=1000), and 2000 × 1600 × 77. For each size, 10

Temporal Link Prediction · 23

Fig. 14: ROC curves and AUC scores for typical problem of predicting links seven steps forward

in time.

(a) AUC (b) Percent Correct in Top 1000

Fig. 15: Impact of varying swapping noise (pswap) averaged over 10 runs per noise value.

(a) AUC (b) Percent Correct in Top 1000

Fig. 16: Impact of varying random noise (ptop) averaged over 10 runs per noise value.

24 · D. M. Dunlavy, T. G. Kolda, and E. Acar

(a) AUC (b) Percent Correct in Top 1000

Fig. 17: Impact of varying random noise (prand) averaged over 10 runs per noise value.

(a) Timings (b) AUC

Fig. 18: Results of computing 10 CP models and Holt-Winters forecasts for tensors of different
sizes: 125× 100× 77 (M=125); 250× 200× 77 (M=250); 500× 400× 77 (M=500); 1000× 800× 77

(M=1000); 2000 × 1600 × 77 (M=2000). Computation wall clock times in seconds are shown in

(a) and AUC scores are shown in (b).

tensors were generated using the procedures in §5.2, and the box and whiskers
plots in Figure 18 present the median (red center mark of boxes), middle quartile
(top and bottom box edges), and outlier (red plus marks) summary statistics across
the experiments. These results support the conclusions above: predictions using
the CP model are more accurate than those computed using the last period to
predict an entire period of links.

6. RELATED WORK

Getoor and Diehl [2005] present a survey of link mining tasks, including node
classification, group detection, and numerous other tasks including link prediction.
Sharan and Neville [2008] consider the goal of node classification for temporal-
relational data, suggesting the idea of a “summary graph” of weighted snapshots
in time which we have incorporated into this work.

The seminal work of Liben-Nowell and Kleinberg [2007] examines numerous
methods for link prediction on co-authorship networks in arXiv bibliometric data.
However, temporal information was unused (e.g., as in [Sharan and Neville 2008])
except for splitting the data. The proportion of new links ranged from 0.1–0.5%
and is thus comparable to what we see in our data (0.05–0.07%). According to

Temporal Link Prediction · 25

Liben-Nowell and Kleinberg, Katz and its variants are among the best link predic-
tors; this observation has been supported by other work as well [Huang et al. 2005;
Wang et al. 2007]. We note that Wang, Satuluri and Parthasarathy [2007] use the
truncated sum approximate Katz measure discussed in §2.3 and recommend AUC
as one evaluation measure for link prediction because it does not require any arbi-
trary cut-off. Rattigan and Jensen [2005] contend that the link mining problem is
too difficult, in part because the proportion of actual links is very small compared
to the number of possible links; specifically, they consider co-author relationships
in DBLP data and observe that the proportion of new links is less than 0.01%.
(Although we also use DBLP data, we consider author-conference links which has
0.05% or more new links.)

Another way to approach link prediction is to treat it as a straightforward classifi-
cation problem by computing features for possible links and using a state-of-the-art
classification engine like support vector machines. Al Hasan et al. [2006] use this
approach in the task of author-author link prediction. They randomly pick equal
sized sets of linked and unlinked pairs of authors. They compute features such as
keyword similarity, neighbor similarity, shortest path, etc. However, it would likely
be computationally intractable to use such a method for computing all possible
links due to the size of the problem and imbalance between linked and unlinked
pairs of authors. Clauset, Moore, and Newman [2008] predict links (or anomalies)
using Monte-Carlo sampling on all possible dendrogram models of a graph. Smola
and Kondor [2003] identify connections between link prediction methods and diffu-
sion kernels on graphs but provide no numerical experiments to support this.

Modeling the time evolution of graphs has been considered, e.g., by Sakar et
al. [2007] who create time-evolving co-occurrence models that map entities into an
evolving latent space. Tong et al. [2008] also compute centrality measures on time
evolving bipartite graphs by aggregating adjacency matrices over time in similar
approaches to those in §2.1.

Link prediction is also related to the task of collaborative filtering. In the Netflix
contest, for example, Bell and Koren [2007] consider the “binary view of the data” as
important as the ratings themselves. In other words, it is important to first predict
who is likely to rate what before focusing on the ratings. This was a specific task
in KDD Cup 2007 [Liu and Kou 2007]. More recent models by Koren [Koren 2009]
explicitly account for changes in user preferences over time. And Xiong et al. [2010]
propose a probabilistic tensor factorization to address the problem of collaborative
filtering over time.

Tensor factorizations have been previously applied in web link analysis [Kolda
et al. 2005] and also in social networks for the analysis of chatroom [Acar et al.
2006] and email communications [Bader et al. 2007; Sun et al. 2009]. In these
applications tensor factorizations are used as exploratory analysis tools and do not
address the link prediction problem.

7. CONCLUSIONS

In this paper, we explore several matrix- and tensor-based approaches to solving the
link prediction problem. We consider author-conference relationships in bibliomet-
ric data and a simulation indicative of user-service relationships in an online context

26 · D. M. Dunlavy, T. G. Kolda, and E. Acar

as example applications, but the methods presented here also have applications in
other domains such as predicting Internet traffic, flight reservations, and more. For
the matrix methods, our results indicate that using a temporal model to combine
multiple time slices into a single training matrix is superior to simple summation
of all temporal data. We also show how to extend Katz to bipartite graphs (e.g.,
for analyzing relationships between two different types of nodes) and to efficiently
compute an approximation to Katz based on the truncated SVD. However, none
of the matrix-based methods fully leverages and exposes the temporal signatures
in the data. We present an alternative: the CP tensor factorizations. Temporal
information can be incorporated into the CP tensor-based link prediction analysis
to gain a perspective not available when computing using matrix-based approaches.

We have considered these methods in terms of their AUC scores and the number
of correct predictions in the top scores. In both cases, we can see that all the
methods do quite well on the DBLP data set. Katz has the best AUC but is not
computationally tractable for large-scale problems; however, the other methods are
not far behind. Moreover, TKatz-CWT is best for predicting new links in the
DBLP data. Our numerical results also show that the tensor-based methods are
competitive with the matrix-based methods in terms of link prediction performance.

The advantage of tensor-based methods is that they can better capture and
exploit temporal patterns. This is illustrated in the user-service example. In this
case, we accurately predicted links several days out even though the underlying
dynamics of the process was much more complicated than in the DBLP case.

The current drawback of the tensor-based approach is that there is typically a
higher computational cost incurred, but the software for these methods is quite new
and will no doubt be improved in the near future.

Acknowledgments

This work was funded by the Laboratory Directed Research & Development (LDRD)
program at Sandia National Laboratories, a multiprogram laboratory operated by
Sandia Corporation, a Lockheed Martin Company, for the United States Depart-
ment of Energy’s National Nuclear Security Administration under Contract DE-
AC04-94AL85000.

REFERENCES

Acar, E., Çamtepe, S. A., and Yener, B. 2006. Collective sampling and analysis of high order
tensors for chatroom communications. In ISI 2006: Proceedings of the IEEE International

Conference on Intelligence and Security Informatics. Lecture Notes in Computer Science, vol.

3975. Springer, Berlin / Heidelberg, 213–224.

Acar, E., Kolda, T. G., and Dunlavy, D. M. 2009. An optimization approach for fitting

canonical tensor decompositions. Tech. Rep. SAND2009-0857, Sandia National Laboratories,
Albuquerque, New Mexico and Livermore, California. Feb. Submitted for publication.

Acar, E. and Yener, B. 2009. Unsupervised multiway data analysis: A literature survey. IEEE
Transactions on Knowledge and Data Engineering 21, 1 (Jan.), 6–20.

Bader, B. W., Berry, M. W., and Browne, M. 2007. Discussion tracking in Enron email
using PARAFAC. In Survey of Text Mining: Clustering, Classification, and Retrieval, Second

Edition, M. W. Berry and M. Castellanos, Eds. Springer, 147–162.

Bader, B. W. and Kolda, T. G. 2007. Efficient MATLAB computations with sparse and factored

tensors. SIAM Journal on Scientific Computing 30, 1 (Dec.), 205–231.

Temporal Link Prediction · 27

Bast, H. and Majumdar, D. 2005. Why spectral retrieval works. In SIGIR ’05: Proceedings

of the 28th annual international ACM SIGIR conference on Research and development in
information retrieval. 11–18.

Bell, R. M. and Koren, Y. 2007. Lessons from the Netflix Prize Challenge. ACM SIGKDD
Explorations Newsletter 9, 75–79.

Carroll, J. D. and Chang, J. J. 1970. Analysis of individual differences in multidimensional
scaling via an N-way generalization of “Eckart-Young” decomposition. Psychometrika 35, 283–

319.

Chatfield, C. and Yar, M. 1988. Holt-winters forecasting: Some practical issues. Journal of
the Royal Statistical Society. Series D (The Statistician) 37, 2, 129–140.

Clauset, A., Moore, C., and Newman, M. 2008. Hierarchical structure and the prediction of
missing links in networks. Nature 453.

Dumais, S. T., Furnas, G. W., Landauer, T. K., Deerwester, S., and Harshman, R. 1988.
Using latent semantic analysis to improve access to textual information. In CHI ’88: Proceedings

of the SIGCHI Conference on Human Factors in Computing Systems. ACM Press, 281–285.

Gardner, E. S. 2006. Exponential smoothing: The state of the art - part ii. International Journal

of Forecasting 22, 637–666.

Getoor, L. and Diehl, C. P. 2005. Link mining: a survey. ACM SIGKDD Explorations Newslet-

ter 7, 2, 3–12.

Harshman, R. A. 1970. Foundations of the PARAFAC procedure: Models and conditions for
an “explanatory” multi-modal factor analysis. UCLA working papers in phonetics 16, 1–84.

Available at http://www.psychology.uwo.ca/faculty/harshman/wpppfac0.pdf.

Hasan, M. A., Chaoji, V., Salem, S., and Zaki, M. 2006. Link prediction using supervised

learning. In Proc. SIAM Data Mining Workshop on Link Analysis, Counterterrorism, and

Security.

Huang, Z., Li, X., and Chen, H. 2005. Link prediction approach to collaborative filtering. In

JCDL ’05: Proc. of the 5th ACM/IEEE-CS joint conference on Digital libraries. 141–142.

Huang, Z. and Lin, D. K. J. 2009. The time-series link prediction problem with applications in

communication surveillance. INFORMS Journal on Computing 21, 286–303.

Katz, L. 1953. A new status index derived from sociometric analysis. Psychometrika 18, 1

(Mar.), 39–43.

Kolda, T. G. and Bader, B. W. 2009. Tensor decompositions and applications. SIAM Re-

view 51, 3 (Sept.), 455–500.

Kolda, T. G., Bader, B. W., and Kenny, J. P. 2005. Higher-order web link analysis using

multilinear algebra. In ICDM 2005: Proceedings of the 5th IEEE International Conference on

Data Mining. IEEE Computer Society, 242–249.

Koren, Y. 2009. Collaborative filtering with temporal dynamics. In KDD ’09: Proceedings of

the 15th ACM SIGKDD international conference on Knowledge discovery and data mining.
ACM, New York, NY, USA, 447–456.

Koren, Y., Bell, R., and Volinsky, C. 2009. Matrix factorization techniques for recommender
systems. IEEE Computer 42, 30–37.

Kruskal, J. B. 1989. Rank, decomposition, and uniqueness for 3-way and N -way arrays. In
Multiway Data Analysis, R. Coppi and S. Bolasco, Eds. North-Holland, Amsterdam, 7–18.

Liben-Nowell, D. and Kleinberg, J. 2007. The link-prediction problem for social networks.
Journal of the American Society for Information Science and Technology 58, 7, 1019–1031.

Liu, Y. and Kou, Z. 2007. Predicting who rated what in large-scale datasets. ACM SIGKDD

Explorations Newsletter 9, 62–65.

Makridakis, S. and Hibon, M. 2000. The m3 competition: results, conclusions and implications.

International Journal of Forecasting 16, 451–476.

Rattigan, M. J. and Jensen, D. 2005. The case for anomalous link discovery. ACM SIGKDD

Explorations Newsletter 7, 2, 41–47.

Saad, Y. 1992. Numerical Methods for Large Eigenvalue Problems. Manchester University Press.

28 · D. M. Dunlavy, T. G. Kolda, and E. Acar

Sarkar, P., Siddiqi, S. M., and Gordon, G. J. 2007. A latent space approach to dynamic

embedding of co-occurrence data. In AI-STATS’07: Proceedings of the Eleventh International
Conference on Artificial Intelligence and Statistics (electronic).

Sharan, U. and Neville, J. 2008. Temporal-relational classifiers for prediction in evolving

domains. In ICDM ’08: Proceedings of the 2008 Eighth IEEE International Conference on
Data Mining. IEEE Computer Society, 540–549.

Smola, A. and Kondor, R. 2003. Kernels and regularization on graphs. In Proceedings of the

Annual Conference on Computational Learning Theory and Kernel Workshop, B. Schölkopf

and M. Warmuth, Eds. Lecture Notes in Computer Science. Springer.

Stager, M., Lukowicz, P., and Troster, G. 2006. Dealing with class skew in context recogni-
tion. In ICDCSW’06: Proceedings of the 26th IEEE International Conference on Distributed

Computing Systems Workshops. 58.

Sun, J., Papadimitriou, S., Lin, C.-Y., Cao, N., Liu, S., and Qian, W. 2009. Multivis: Content-
based social network exploration through multi-way visual analysis. In SDM’09: Proceedings

of the Ninth SIAM International Conference on Data Mining. 1064–1075.

Tong, H., Papadimitriou, S., Yu, P. S., and Faloutsos, C. 2008. Proximity tracking on

time-evolving bipartite graphs. In SDM’08: Proceedings of the Eighth SIAM International
Conference on Data Mining. 704–715.

Tucker, L. R. 1963. Implications of factor analysis of three-way matrices for measurement of

change. In Problems in Measuring Change, C. W. Harris, Ed. University of Wisconsin Press,
122–137.

Tucker, L. R. 1966. Some mathematical notes on three-mode factor analysis. Psychometrika 31,

279–311.

Wang, C., Satuluri, V., and Parthasarathy, S. 2007. Local probabilistic models for link

prediction. In ICDM’07: Proc. of the Seventh IEEE Conference on Data Mining. 322–331.

Xiong, L., Chen, X., Huang, T.-K., Schneider, J., and Carbonell, J. G. 2010. Temporal

collaborative filtering with bayesian probabilistic tensor factorization.

Yan, H., Grosky, W. I., and Fotouhi, F. 2008. Augmenting the power of LSI in text retrieval:

Singular value rescaling. Data & Knowledge Engineering 65, 108–125.

